Moving robots efficiently using the combinatorics of CAT(0) cubical complexes

نویسندگان

  • Federico Ardila
  • Tia Baker
  • Rika Yatchak
چکیده

Given a reconfigurable system X , such as a robot moving on a grid or a set of particles traversing a graph without colliding, the possible positions of X naturally form a cubical complex S(X). When S(X) is a CAT(0) space, we can explicitly construct the shortest path between any two points, for any of the four most natural metrics: distance, time, number of moves, and number of steps of simultaneous moves. CAT(0) cubical complexes are in correspondence with posets with inconsistent pairs (PIPs), so we can prove that a state complex S(X) is CAT(0) by identifying the corresponding PIP. We illustrate this very general strategy with one known and one new example: Abrams and Ghrist’s “positive robotic arm” on a square grid, and the robotic arm in a strip. We then use the PIP as a combinatorial “remote control” to move these robots efficiently from one position to another. Résumé. Etant donné un système X , qui est reconfigurable, par example un robot se déplaçant sur une grille ou bien un ensemble de particules qui traverse un graphe sans collision, toutes les positions possibles de X forment de façon naturel un c complexe cubique S(X). Dans le cas ou S(X) est un espace CAT(0), nous pouvons explicitement construire le chemin le plus court entre deux points quelconques, pour une des quatre mesures les plus naturels: la distance euclidienne, le temps, le nombre de coups, et le nombre d’étapes de mouvements simultanés. CAT (0) complexes cubiques sont en correspondance avec les ensembles partiellement ordonnés posets des paires incompatibles (PPI), et donc nous pouvons demontrer qu’un état complexe S(X) est CAT (0), en identifiant le PPI correspondant. Nous illustrons cette stratégie très générale avec un example bien connu et un exemple nouveau: L’example de Abrams et Ghrist du “bras robotique positif” sur une grille carrée, et le bras robotique dans une bande. Ensuite nous utilisons le PPI come une “télécommande” combinatorique pour efficacement déplacer ces robots d’une position à une autre.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Geometry and Topology of Reconfiguration

A number of reconfiguration problems in robotics, biology, computer science, combinatorics, and group theory coordinate local rules to effect global changes in system states. We define for any such reconfigurable system a cubical complex — the state complex — which coordinates independent local moves. We prove classification and realization theorems for state complexes, using CAT(0) geometry as...

متن کامل

A polynomial time algorithm to compute geodesics in CAT(0) cubical complexes

This paper presents the first polynomial time algorithm to compute geodesics in a CAT(0) cubical complex in general dimension. The algorithm is a simple iterative method to update breakpoints of a path joining two points using Owen and Provan’s algorithm (2011) as a subroutine. Our algorithm is applicable to any CAT(0) space in which geodesics between two close points can be computed, not limit...

متن کامل

The Tits Alternative for Cat(0) Cubical Complexes

We prove a Tits alternative theorem for groups acting on CAT(0) cubical complexes. Namely, suppose that G is a group for which there is a bound on the orders of its finite subgroups. We prove that if G acts properly on a finitedimensional CAT(0) cubical complex, then either G contains a free subgroup of rank 2 or G is finitely generated and virtually abelian. In particular the above conclusion ...

متن کامل

Geodesics in CAT(0) Cubical Complexes

We describe an algorithm to compute the geodesics in an arbitrary CAT(0) cubical complex. A key tool is a correspondence between cubical complexes of global non-positive curvature and posets with inconsistent pairs. This correspondence also gives an explicit realization of such a complex as the state complex of a reconfigurable system, and a way to embed any interval in the integer lattice cubi...

متن کامل

CAT(0) cubical complexes for graph products of finitely generated abelian groups

We construct for every graph product of finitely generated abelian groups a CAT(0) cubical complex on which it acts properly and cocompactly. The complex generalizes (up to subdivision) the Salvetti complex of a right-angled Artin group and the Coxeter complex of a right-angled Coxeter group.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2014